1 // Taken from glibc 2.1.3, updated from 2.2.5
3 /* md5.c - Functions to compute MD5 message digest of files or memory blocks
4 according to the definition of MD5 in RFC 1321 from April 1992.
5 Copyright (C) 1995, 1996, 1997, 1999 Free Software Foundation, Inc.
6 This file is part of the GNU C Library.
8 The GNU C Library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Library General Public License as
10 published by the Free Software Foundation; either version 2 of the
11 License, or (at your option) any later version.
13 The GNU C Library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Library General Public License for more details.
18 You should have received a copy of the GNU Library General Public
19 License along with the GNU C Library; see the file COPYING.LIB. If not,
20 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 /* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. */
29 #include <sys/types.h>
31 #if STDC_HEADERS || defined _LIBC
36 # define memcpy(d, s, n) bcopy ((s), (d), (n))
40 /* [RA] #include "md5.h" */
42 #include <glibc-md5.hh>
46 # if __BYTE_ORDER == __BIG_ENDIAN
47 # define WORDS_BIGENDIAN 1
49 /* We need to keep the namespace clean so define the MD5 function
50 protected using leading __ . */
51 /* [RA] # define md5_init_ctx __md5_init_ctx */
52 /* [RA] # define md5_process_block __md5_process_block */
53 /* [RA] # define md5_process_bytes __md5_process_bytes */
54 /* [RA] # define md5_finish_ctx __md5_finish_ctx */
55 /* [RA] # define md5_read_ctx __md5_read_ctx */
56 /* [RA] # define md5_stream __md5_stream */
57 /* [RA] # define md5_buffer __md5_buffer */
60 #ifdef WORDS_BIGENDIAN
62 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
68 /* This array contains the bytes used to pad the buffer to the next
69 64-byte boundary. (RFC 1321, 3.1: Step 1) */
70 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
73 /* Initialize structure containing state of computation.
74 (RFC 1321, 3.3: Step 3) */
75 void MD5Sum::md5_init_ctx (md5_ctx *ctx)
82 ctx->total[0] = ctx->total[1] = 0;
86 /* Put result from CTX in first 16 bytes following RESBUF. The result
87 must be in little endian byte order.
89 IMPORTANT: On some systems it is required that RESBUF is correctly
90 aligned for a 32 bits value. */
91 byte* MD5Sum::md5_read_ctx(const md5_ctx *ctx, byte* resbuf)
93 ((uint32 *) resbuf)[0] = SWAP (ctx->A);
94 ((uint32 *) resbuf)[1] = SWAP (ctx->B);
95 ((uint32 *) resbuf)[2] = SWAP (ctx->C);
96 ((uint32 *) resbuf)[3] = SWAP (ctx->D);
101 /* Process the remaining bytes in the internal buffer and the usual
102 prolog according to the standard and write the result to RESBUF.
104 IMPORTANT: On some systems it is required that RESBUF is correctly
105 aligned for a 32 bits value. */
106 byte* MD5Sum::md5_finish_ctx(struct md5_ctx* ctx, byte* resbuf)
108 /* Take yet unprocessed bytes into account. */
109 uint32 bytes = ctx->buflen;
112 /* Now count remaining bytes. */
113 ctx->total[0] += bytes;
114 if (ctx->total[0] < bytes)
117 pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
118 memcpy (&ctx->buffer[bytes], fillbuf, pad);
120 /* Put the 64-bit file length in *bits* at the end of the buffer. */
121 *(uint32 *) &ctx->buffer[bytes + pad] = SWAP (ctx->total[0] << 3);
122 *(uint32 *) &ctx->buffer[bytes + pad + 4] = SWAP ((ctx->total[1] << 3) |
123 (ctx->total[0] >> 29));
125 /* Process last bytes. */
126 md5_process_block (ctx->buffer, bytes + pad + 8, ctx);
128 return md5_read_ctx (ctx, resbuf);
131 /* Compute MD5 message digest for bytes read from STREAM. The
132 resulting message digest number will be written into the 16 bytes
133 beginning at RESBLOCK. */
135 //[RA] md5_stream (stream, resblock)
137 //[RA] void *resblock;
139 //[RA] /* Important: BLOCKSIZE must be a multiple of 64. */
140 //[RA] #define BLOCKSIZE 4096
141 //[RA] md5_ctx ctx; // [RA]
142 //[RA] char buffer[BLOCKSIZE + 72];
145 //[RA] /* Initialize the computation context. */
146 //[RA] md5_init_ctx (&ctx);
148 //[RA] /* Iterate over full file contents. */
151 //[RA] /* We read the file in blocks of BLOCKSIZE bytes. One call of the
152 //[RA] computation function processes the whole buffer so that with the
153 //[RA] next round of the loop another block can be read. */
157 //[RA] /* Read block. Take care for partial reads. */
160 //[RA] n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
164 //[RA] while (sum < BLOCKSIZE && n != 0);
165 //[RA] if (n == 0 && ferror (stream))
168 //[RA] /* If end of file is reached, end the loop. */
172 //[RA] /* Process buffer with BLOCKSIZE bytes. Note that
173 //[RA] BLOCKSIZE % 64 == 0
175 //[RA] md5_process_block (buffer, BLOCKSIZE, &ctx);
178 //[RA] /* Add the last bytes if necessary. */
180 //[RA] md5_process_bytes (buffer, sum, &ctx);
182 //[RA] /* Construct result in desired memory. */
183 //[RA] md5_finish_ctx (&ctx, resblock);
187 //[RA] /* Compute MD5 message digest for LEN bytes beginning at BUFFER. The
188 //[RA] result is always in little endian byte order, so that a byte-wise
189 //[RA] output yields to the wanted ASCII representation of the message
192 //[RA] md5_buffer (buffer, len, resblock)
193 //[RA] const char *buffer;
195 //[RA] void *resblock;
197 //[RA] md5_ctx ctx; // RA
199 //[RA] /* Initialize the computation context. */
200 //[RA] md5_init_ctx (&ctx);
202 //[RA] /* Process whole buffer but last len % 64 bytes. */
203 //[RA] md5_process_bytes (buffer, len, &ctx);
205 //[RA] /* Put result in desired memory area. */
206 //[RA] return md5_finish_ctx (&ctx, resblock);
210 void MD5Sum::md5_process_bytes(const void* buffer, size_t len,
213 /* When we already have some bits in our internal buffer concatenate
214 both inputs first. */
215 if (ctx->buflen != 0)
217 size_t left_over = ctx->buflen;
218 size_t add = 128 - left_over > len ? len : 128 - left_over;
220 memcpy (&ctx->buffer[left_over], buffer, add);
221 ctx->buflen += (uint32)add;
223 if (ctx->buflen > 64)
225 md5_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
228 /* The regions in the following copy operation cannot overlap. */
229 memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
233 buffer = (const char *) buffer + add;
237 /* Process available complete blocks. */
240 #if !_STRING_ARCH_unaligned
241 /* To check alignment gcc has an appropriate operator. Other
244 # define UNALIGNED_P(p) (((md5_uintptr) p) % __alignof__ (uint32) != 0)
246 # define UNALIGNED_P(p) (((md5_uintptr) p) % sizeof (uint32) != 0)
248 if (UNALIGNED_P (buffer))
251 md5_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
252 buffer = (const char *) buffer + 64;
258 md5_process_block (buffer, len & ~63, ctx);
259 buffer = (const char *) buffer + (len & ~63);
264 /* Move remaining bytes in internal buffer. */
267 size_t left_over = ctx->buflen;
269 memcpy (&ctx->buffer[left_over], buffer, len);
273 md5_process_block (ctx->buffer, 64, ctx);
275 memcpy (ctx->buffer, &ctx->buffer[64], left_over);
277 ctx->buflen = (uint32)left_over;
282 /* These are the four functions used in the four steps of the MD5 algorithm
283 and defined in the RFC 1321. The first function is a little bit optimized
284 (as found in Colin Plumbs public domain implementation). */
285 /* #define FF(b, c, d) ((b & c) | (~b & d)) */
286 #define FF(b, c, d) (d ^ (b & (c ^ d)))
287 #define FG(b, c, d) FF (d, b, c)
288 #define FH(b, c, d) (b ^ c ^ d)
289 #define FI(b, c, d) (c ^ (b | ~d))
291 /* Process LEN bytes of BUFFER, accumulating context into CTX.
292 It is assumed that LEN % 64 == 0. */
294 void MD5Sum::md5_process_block(const void* buffer, size_t len, md5_ctx* ctx)
296 uint32 correct_words[16];
297 const uint32 *words = (uint32*)(buffer);
298 size_t nwords = len / sizeof (uint32);
299 const uint32 *endp = words + nwords;
305 /* First increment the byte count. RFC 1321 specifies the possible
306 length of the file up to 2^64 bits. Here we only compute the
307 number of bytes. Do a double word increment. */
308 ctx->total[0] += (uint32)len;
309 if (ctx->total[0] < len)
312 /* Process all bytes in the buffer with 64 bytes in each round of
316 uint32 *cwp = correct_words;
322 /* First round: using the given function, the context and a constant
323 the next context is computed. Because the algorithms processing
324 unit is a 32-bit word and it is determined to work on words in
325 little endian byte order we perhaps have to change the byte order
326 before the computation. To reduce the work for the next steps
327 we store the swapped words in the array CORRECT_WORDS. */
329 #define OP(a, b, c, d, s, T) \
332 a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \
339 /* It is unfortunate that C does not provide an operator for
340 cyclic rotation. Hope the C compiler is smart enough. */
341 #define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
343 /* Before we start, one word to the strange constants.
344 They are defined in RFC 1321 as
346 T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
350 OP (A, B, C, D, 7, 0xd76aa478);
351 OP (D, A, B, C, 12, 0xe8c7b756);
352 OP (C, D, A, B, 17, 0x242070db);
353 OP (B, C, D, A, 22, 0xc1bdceee);
354 OP (A, B, C, D, 7, 0xf57c0faf);
355 OP (D, A, B, C, 12, 0x4787c62a);
356 OP (C, D, A, B, 17, 0xa8304613);
357 OP (B, C, D, A, 22, 0xfd469501);
358 OP (A, B, C, D, 7, 0x698098d8);
359 OP (D, A, B, C, 12, 0x8b44f7af);
360 OP (C, D, A, B, 17, 0xffff5bb1);
361 OP (B, C, D, A, 22, 0x895cd7be);
362 OP (A, B, C, D, 7, 0x6b901122);
363 OP (D, A, B, C, 12, 0xfd987193);
364 OP (C, D, A, B, 17, 0xa679438e);
365 OP (B, C, D, A, 22, 0x49b40821);
367 /* For the second to fourth round we have the possibly swapped words
368 in CORRECT_WORDS. Redefine the macro to take an additional first
369 argument specifying the function to use. */
371 #define OP(f, a, b, c, d, k, s, T) \
374 a += f (b, c, d) + correct_words[k] + T; \
381 OP (FG, A, B, C, D, 1, 5, 0xf61e2562);
382 OP (FG, D, A, B, C, 6, 9, 0xc040b340);
383 OP (FG, C, D, A, B, 11, 14, 0x265e5a51);
384 OP (FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
385 OP (FG, A, B, C, D, 5, 5, 0xd62f105d);
386 OP (FG, D, A, B, C, 10, 9, 0x02441453);
387 OP (FG, C, D, A, B, 15, 14, 0xd8a1e681);
388 OP (FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
389 OP (FG, A, B, C, D, 9, 5, 0x21e1cde6);
390 OP (FG, D, A, B, C, 14, 9, 0xc33707d6);
391 OP (FG, C, D, A, B, 3, 14, 0xf4d50d87);
392 OP (FG, B, C, D, A, 8, 20, 0x455a14ed);
393 OP (FG, A, B, C, D, 13, 5, 0xa9e3e905);
394 OP (FG, D, A, B, C, 2, 9, 0xfcefa3f8);
395 OP (FG, C, D, A, B, 7, 14, 0x676f02d9);
396 OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
399 OP (FH, A, B, C, D, 5, 4, 0xfffa3942);
400 OP (FH, D, A, B, C, 8, 11, 0x8771f681);
401 OP (FH, C, D, A, B, 11, 16, 0x6d9d6122);
402 OP (FH, B, C, D, A, 14, 23, 0xfde5380c);
403 OP (FH, A, B, C, D, 1, 4, 0xa4beea44);
404 OP (FH, D, A, B, C, 4, 11, 0x4bdecfa9);
405 OP (FH, C, D, A, B, 7, 16, 0xf6bb4b60);
406 OP (FH, B, C, D, A, 10, 23, 0xbebfbc70);
407 OP (FH, A, B, C, D, 13, 4, 0x289b7ec6);
408 OP (FH, D, A, B, C, 0, 11, 0xeaa127fa);
409 OP (FH, C, D, A, B, 3, 16, 0xd4ef3085);
410 OP (FH, B, C, D, A, 6, 23, 0x04881d05);
411 OP (FH, A, B, C, D, 9, 4, 0xd9d4d039);
412 OP (FH, D, A, B, C, 12, 11, 0xe6db99e5);
413 OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8);
414 OP (FH, B, C, D, A, 2, 23, 0xc4ac5665);
417 OP (FI, A, B, C, D, 0, 6, 0xf4292244);
418 OP (FI, D, A, B, C, 7, 10, 0x432aff97);
419 OP (FI, C, D, A, B, 14, 15, 0xab9423a7);
420 OP (FI, B, C, D, A, 5, 21, 0xfc93a039);
421 OP (FI, A, B, C, D, 12, 6, 0x655b59c3);
422 OP (FI, D, A, B, C, 3, 10, 0x8f0ccc92);
423 OP (FI, C, D, A, B, 10, 15, 0xffeff47d);
424 OP (FI, B, C, D, A, 1, 21, 0x85845dd1);
425 OP (FI, A, B, C, D, 8, 6, 0x6fa87e4f);
426 OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
427 OP (FI, C, D, A, B, 6, 15, 0xa3014314);
428 OP (FI, B, C, D, A, 13, 21, 0x4e0811a1);
429 OP (FI, A, B, C, D, 4, 6, 0xf7537e82);
430 OP (FI, D, A, B, C, 11, 10, 0xbd3af235);
431 OP (FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
432 OP (FI, B, C, D, A, 9, 21, 0xeb86d391);
434 /* Add the starting values of the context. */
441 /* Put checksum in context given as argument. */